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Abstract

For any positive integer n, let f5(n) denote the integer obtained

by reversing the digits of n + 5. In 1959, M. W. Gorzkowski

proved that if n = 102k+3 +10k+1 +1 where k = 0,1,2, ..., then

the sequence

n, f5(n), f5(f5(n)), ...

is a purely periodic sequence with period 36 ∗ 10k. In this talk,

I will present a proof by W. Sierpinski (based on Gorzkowski’s

idea), as well as a slightly stronger theorem for which the same

proof works (which may be contained in the original literature).



Notation

Throughout this seminar, n will always be a natural number

(n ∈ Z ∪ {0}), and s ∈ Z. We have already defined f5(n), but in

general, let fs(n) denote the integer obtained by reversing the

digits of n + s, and let fr
s (n) denote (fs ◦ fs ◦ ...fs)

︸ ︷︷ ︸

r times

(n).

In this seminar, we will be interested in sequences of the form:

Ss(n) = (n, fs(n), f2
s (n), ...)



How Do These Sequences Behave?

Example: for n=0, s=4: 0,4,8,21,52,65,96, ???

Example: for n=0, s=5: 0,5,1,6,11,61,66, ???

Example: for n=1, s=6: 1,7,31,73,97,301,703,907, ???

Are these sequences monotonic, or eventually monotonic? Are

they convergent? Are they periodic? If so, how long is the

period? If not, are they bounded at all? These sequences have

been studied extensively by W. Sierpinski and others during the

mid 20th century.



Interesting Observations

• fs(n) is never one to one. Example:

2 = f5(15) = f5(195) = f5(1995) = f5(199...95)

• fs(n) is never onto: Because we write 01 as 1, fs(n) = 10

has no solutions.



Question 1: Convergent, Periodic, or

Unbounded?

While the sequence S4(0) = (0,4,8,21,52,65,96, ...) looks monotonic

increasing, it’s not. In fact, it’s periodic with period 55.

0, 4, 8, 21, 52, 65, 96, 1, 5, 9, 31, 53, 75, 97, 101, 501, 505,

905, 909, 319, 323, 723, 727, 137, 141, 541, 545, 945, 949,

359, 363, 763, 767, 177, 181, 581, 585, 985, 989, 399, 304,

803, 708, 217, 122, 621, 526, 35, 93, 79, 38, 24, 82, 6 8, 27,

13, 71, 57, 16, 2, 6, 1



Here are some examples of sequences: one that converges and

one that is unbounded:

• S9(30): 30,93,201,12,12,12, ...

• S10(0): 0, 1, 11, 12, 22, 23, 33, 34, 44, 45, 55, 56, 66, 67,

77, 78, 88, 89, 99, 901, 119, 921, 139, 941, 159, 961, 179,

981, 199, 902, 219, 922, 239, 942, 259, 962, 279, 982, 299,

903, 319, 923, 339, 943, 359, 963, 379, 983, 399, 904, 419,

924, 439, 944, 459, 964, 479, 984, 499, 905, 519, 925, 539,

945, 559, 965, 579, 985, 599, 906, 619, 926, 639, 946, 659,

966, 679, 986, 699, 907, 719, 927, 739, 947, 759, 967, 779,

987, 799, 908, 819, 928, 839, 948, 859, 968, 879, 988, 899,

909, 919, 929, 939, 949, 959, 969, 979, 989, 999, 9001,...



In General:

Theorem 1 For s = 3, 7, 9, or 11, and for any n < 100, Ss(n)

is periodic.

Schinzel (1959) proved this (essentially) by exhaustion. He then

used this in the following theorem:

Theorem 2 For s = 3, 7, 9, or 11 and for any n, there occurs

in the sequence Ss(n) a number less than 100.

From this it follows that the set of all periods of all such se-

quences (s ∈ {3,7,9,11}) is finite.



J. Browkin in 1959 provided a strengthening of Theorem 2:

Theorem 3 Let n ∈ N, s ∈ Z+ such that gcd(s,10) = 1. Then

Ss(n) is eventually periodic.

Theorem 4 For s ∈ Z+ such that gcd(s,10) = 10, there exists

n ∈ N such that Ss(n) is not periodic.



Q2: If Ss(n) is periodic, how long is the period?

Theorem 5 If n = 102k+3+10k+1+1 where k = 0,1,2, ..., then

the sequence

n, f5(n), f2
5(n), ...

is a purely periodic sequence with period 36 ∗ 10k.

Proof?

Theorem 6 If s 6= 1 and s|10, then the length of the period for

a suitable n can be arbitrarily large.



Question 3: How Many Different Cycles Are

There?

We have already seen the following: Let s = 3, 7, 9, or 11, and

let n be a positive integer. Then the set of all periods of Ss(n)

is finite. But how many are there? What about the other values

for s? What happens in general when gcd(s,10) 6= 1 and 6= 10?

My Idea:

Define an equivalence relation on the positive integers as follows:

a ≡ b iff Ss(a) and Ss(b) are eventually the same sequence (i.e.,

Sr
s(a) = St

s(b) for some r, t ∈ Z+). I then wrote a java program

to calculate the equivalence classes of Ss(n) for some range of

n, their sizes, and the sizes of the cycles therein.



Example: S3(n), n ∈ {0, ...,1000000}

Number of classes found: 10

Class 1=<9>, size=9, Cycle Size=6

Class 2=<1>, size=1000013, Cycle Size=3

Class 3=<8>, size=8, Cycle Size=6

Class 4=<12>, size=12, Cycle Size=6

Class 5=<13>, size=6, Cycle Size=6

Class 6=<15>, size=6, Cycle Size=3

Class 7=<16>, size=6, Cycle Size=6

Class 8=<19>, size=7, Cycle Size=6

Class 9=<23>, size=17, Cycle Size=6

Class 10=<26>, size=6, Cycle Size=3



Example: S4(n), n ∈ {0, ...,1000000}

Number of classes found: 496

Class 1=<1>, size=1500071, Cycle Size=54

Class 2=<1011>, size=3917, Cycle Size=90

Class 3=<1013>, size=93, Cycle Size=90

Class 4=<1015>, size=97, Cycle Size=90

...

Class 22=<1051>, size=99, Cycle Size=90

Class 23=<1053>, size=93, Cycle Size=90

Class 24=<100011>, size=349907, Cycle Size=1890

Class 25=<100013>, size=1893, Cycle Size=1890

Class 26=<100015>, size=1897, Cycle Size=1890

...

Class 44=<100051>, size=1899, Cycle Size=1890

Class 45=<100053>, size=1893, Cycle Size=1890



Class 46=<100101>, size=572, Cycle Size=450

Class 47=<100103>, size=453, Cycle Size=450

Class 48=<100105>, size=457, Cycle Size=450

...

Class 269=<100547>, size=451, Cycle Size=450

Class 270=<100549>, size=230, Cycle Size=225

Class 271=<100551>, size=459, Cycle Size=450

Class 272=<100555>, size=460, Cycle Size=450

Class 273=<100559>, size=456, Cycle Size=450

Class 274=<100563>, size=462, Cycle Size=450

Class 275=<100567>, size=458, Cycle Size=450

Class 276=<100571>, size=464, Cycle Size=450

Class 277=<100575>, size=460, Cycle Size=450

Class 278=<100579>, size=456, Cycle Size=450

Class 279=<100583>, size=462, Cycle Size=450

Class 280=<100587>, size=458, Cycle Size=450

...
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